70 research outputs found

    Differences between blood and cerebrospinal fluid glial fibrillary Acidic protein levels: The effect of sample stability

    Get PDF
    Introduction: Recent evidence has shown that the marker of reactive astrogliosis, glial fibrillary acidic protein (GFAP), has a stronger relationship with cerebral amyloid beta (Aβ) pathology in blood than in cerebrospinal fluid (CSF). This study investigates if pre-analytical treatment of blood and CSF contribute to these unexpected findings. Methods: Paired CSF and serum samples from 49 individuals (Aβ-negative = 28; Aβ-positive = 21) underwent a series of seven freeze-thaw cycles (FTCs). All samples were analyzed for GFAP and neurofilament light (NfL) using single molecule array technology including a fresh unfrozen sample from each patient. Results: FTC significantly affected CSF GFAP concentration (−188.12 pg/ml per FTC) but not serum GFAP. In the same samples, NfL remained stable. Serum GFAP had a higher discrimination of Aβ burden than CSF GFAP, irrespective of FTC, which also included unfrozen samples. Discussion: This study demonstrates large stability differences of GFAP in CSF and serum. However, this disparity does not seem to fully explain the stronger association of serum GFAP with Aβ pathology. Further work should investigate mechanisms of GFAP release into the bloodstream under pathological conditions

    A genome-wide association study of plasma phosphorylated tau181

    Get PDF
    Plasma phosphorylated tau at threonine-181 (P-tau181) demonstrates promise as an accessible blood-based biomarker specific to Alzheimer's Disease (AD), with levels recently demonstrating high predictive accuracy for AD-relevant pathology. The genetic underpinnings of P-tau181 levels, however, remain elusive. This study presents the first genome-wide association study of plasma P-tau181 in a total sample of 1153 participants from 2 independent cohorts. No loci, other than those within the APOE genomic region (lead variant = rs429358, beta = 0.32, p =8.44 × 10−25) demonstrated association with P-tau181 at genome-wide significance (p < 5 × 10−08), though rs60872856 on chromosome 2 came close (beta = -0.28, p = 3.23 × 10−07, nearest gene=CYTIP). As the APOE ε4 allele is already a well-established genetic variant associated with AD, this study found no evidence of novel genetic associations relevant to plasma P-tau181, though presents rs60872856 on chromosome 2 as a candidate locus to be further evaluated in future larger size GWAS

    Alzheimer Disease Blood Biomarkers in Patients With Out-of-Hospital Cardiac Arrest

    Get PDF
    Importance: Blood phosphorylated tau (p-tau) and amyloid-β peptides (Aβ) are promising peripheral biomarkers of Alzheimer disease (AD) pathology. However, their potential alterations due to alternative mechanisms, such as hypoxia in patients resuscitated from cardiac arrest, are not known. Objective: To evaluate whether the levels and trajectories of blood p-tau, Aβ42, and Aβ40 following cardiac arrest, in comparison with neural injury markers neurofilament light (NfL) and total tau (t-tau), can be used for neurological prognostication following cardiac arrest. Design, Setting, and Participants: This prospective clinical biobank study used data from the randomized Target Temperature Management After Out-of-Hospital Cardiac Arrest (TTM) trial. Unconscious patients with cardiac arrest of presumed cardiac origin were included between November 11, 2010, and January 10, 2013, from 29 international sites. Serum analysis for serum NfL and t-tau were performed between August 1 and August 23, 2017. Serum p-tau, Aβ42, and Aβ40 were analyzed between July 1 and July 15, 2021, and between May 13 and May 25, 2022. A total of 717 participants from the TTM cohort were examined: an initial discovery subset (n = 80) and a validation subset. Both subsets were evenly distributed for good and poor neurological outcome after cardiac arrest. Exposures: Serum p-tau, Aβ42, and Aβ40 concentrations using single molecule array technology. Serum levels of NfL and t-tau were included as comparators. Main Outcomes and Measures: Blood biomarker levels at 24 hours, 48 hours, and 72 hours after cardiac arrest. Poor neurologic outcome at 6-month follow-up, defined according to the cerebral performance category scale as category 3 (severe cerebral disability), 4 (coma), or 5 (brain death). Results: This study included 717 participants (137 [19.1%] female and 580 male [80.9%]; mean [SD] age, 63.9 [13.5] years) who experienced out-of-hospital cardiac arrest. Significantly elevated serum p-tau levels were observed at 24 hours, 48 hours, and 72 hours in cardiac arrest patients with poor neurological outcome. The magnitude and prognostication of the change was greater at 24 hours (area under the receiver operating characteristic curve [AUC], 0.96; 95% CI, 0.95-0.97), which was similar to NfL (AUC, 0.94; 95% CI, 0.92-0.96). However, at later time points, p-tau levels decreased and were weakly associated with neurological outcome. In contrast, NfL and t-tau maintained high diagnostic accuracies, even 72 hours after cardiac arrest. Serum Aβ42 and Aβ40 concentrations increased over time in most patients but were only weakly associated with neurological outcome. Conclusions and Relevance: In this case-control study, blood biomarkers indicative of AD pathology demonstrated different dynamics of change after cardiac arrest. The increase of p-tau at 24 hours after cardiac arrest suggests a rapid secretion from the interstitial fluid following hypoxic-ischemic brain injury rather than ongoing neuronal injury like NfL or t-tau. In contrast, delayed increases of Aβ peptides after cardiac arrest indicate activation of amyloidogenic processing in response to ischemia

    Association of plasma P-tau181 with memory decline in non-demented adults.

    Get PDF
    Alzheimer's disease is the leading cause of dementia worldwide and is characterized by a long preclinical phase in which amyloid-β and tau accumulate in the absence of cognitive decline. In vivo biomarkers for Alzheimer's disease are expensive, invasive and inaccessible, yet are critical for accurate disease diagnosis and patient management. Recent ultrasensitive methods to measure plasma phosphorylated tau 181 (p-tau181) display strong correlations with tau positron emission tomography, p-tau181 in CSF, and tau pathology at autopsy. The clinical utility of plasma-based p-tau181 biomarkers is unclear. In a longitudinal multicentre observational study, we assessed 1113 non-demented individuals (509 cognitively unimpaired elderly and 604 individuals with mild cognitive impairment) from the Alzheimer's Disease Neuroimaging Initiative who underwent neuropsychological assessments and were evaluated for plasma p-tau181. The primary outcome was a memory composite z-score. Mixed-effect models assessed rates of memory decline in relation to baseline plasma p-tau181, and whether plasma p-tau181 significantly predicted memory decline beyond widely available clinical and genetic data (age, sex, years of education, cardiovascular and metabolic conditions, and APOEε4 status). Participants were followed for a median of 4.1 years. Baseline plasma p-tau181 was associated with lower baseline memory (β estimate: -0.49, standard error: 0.06, t-value: -7.97), as well as faster rates of memory decline (β estimate: -0.11, standard error: 0.01, t-value: -7.37). Moreover, the inclusion of plasma p-tau181 resulted in improved prediction of memory decline beyond clinical and genetic data (marginal R 2 of 16.7-23%, χ2 = 100.81, P < 0.00001). Elevated baseline plasma p-tau181 was associated with higher rates of clinical progression to mild cognitive impairment (hazard ratio = 1.82, 95% confidence interval: 1.2-2.8) and from mild cognitive impairment to dementia (hazard ratio = 2.06, 95% confidence interval: 1.55-2.74). Our results suggest that in elderly individuals without dementia at baseline, plasma p-tau181 biomarkers were associated with greater memory decline and rates of clinical progression to dementia. Plasma p-tau181 improved prediction of memory decline above a model with currently available clinical and genetic data. While the clinical importance of this improvement in the prediction of memory decline is unknown, these results highlight the potential of plasma p-tau181 as a cost-effective and scalable Alzheimer's disease biomarker

    Amyloid-beta modulates the association between neurofilament light chain and brain atrophy in Alzheimer’s disease

    Get PDF
    Neurofilament light chain (NFL) measurement has been gaining strong support as a clinically useful neuronal injury biomarker for various neurodegenerative conditions. However, in Alzheimer’s disease (AD), its reflection on regional neuronal injury in the context of amyloid pathology remains unclear. This study included 83 cognitively normal (CN), 160 mild cognitive impairment (MCI), and 73 AD subjects who were further classified based on amyloid-beta (Aβ) status as positive or negative (Aβ+ vs Aβ−). In addition, 13 rats (5 wild type and 8 McGill-R-Thy1-APP transgenic (Tg)) were examined. In the clinical study, reduced precuneus/posterior cingulate cortex and hippocampal grey matter density were significantly associated with increased NFL concentrations in cerebrospinal fluid (CSF) or plasma in MCI Aβ+ and AD Aβ+. Moreover, AD Aβ+ showed a significant association between the reduced grey matter density in the AD-vulnerable regions and increased NFL concentrations in CSF or plasma. Congruently, Tg rats recapitulated and validated the association between CSF NFL and grey matter density in the parietotemporal cortex, entorhinal cortex, and hippocampus in the presence of amyloid pathology. In conclusion, reduced grey matter density and elevated NFL concentrations in CSF and plasma are associated in AD-vulnerable regions in the presence of amyloid positivity in the AD clinical spectrum and amyloid Tg rat model. These findings further support the NFL as a neuronal injury biomarker in the research framework of AD biomarker classification and for the evaluation of therapeutic efficacy in clinical trials

    Plasma and CSF concentrations of N-terminal tau fragments associate with in vivo neurofibrillary tangle burden

    Get PDF
    INTRODUCTION: Fluid biomarkers capable of specifically tracking tau tangle pathology in vivo are greatly needed. METHODS: We measured cerebrospinal fluid (CSF) and plasma concentrations of N-terminal tau fragments (NTA-tau), using a novel immunoassay (NTA) in the TRIAD cohort, consisting of 272 individuals assessed with amyloid beta (Aβ) positron emission tomography (PET), tau PET, magnetic resonance imaging (MRI) and cognitive assessments. RESULTS: CSF and plasma NTA-tau concentrations were specifically increased in cognitively impaired Aβ-positive groups. CSF and plasma NTA-tau concentrations displayed stronger correlations with tau PET than with Aβ PET and MRI, both in global uptake and at the voxel level. Regression models demonstrated that both CSF and plasma NTA-tau are preferentially associated with tau pathology. Moreover, plasma NTA-tau was associated with longitudinal tau PET accumulation across the aging and Alzheimer's disease (AD) spectrum. DISCUSSION: NTA-tau is a biomarker closely associated with in vivo tau deposition in the AD continuum and has potential as a tau tangle biomarker in clinical settings and trials. HIGHLIGHTS: An assay for detecting N-terminal tau fragments (NTA-tau) in plasma and CSF was evaluated. NTA-tau is more closely associated with tau PET than amyloid PET or neurodegeneration. NTA-tau can successfully track in vivo tau deposition across the AD continuum. Plasma NTA-tau increased over time only in cognitively impaired amyloid-β positive individuals

    P-tau235: a novel biomarker for staging preclinical Alzheimer's disease

    Get PDF
    Alzheimer’s disease (AD) is characterised by a long preclinical phase. Although phosphorylated tau (p-tau) species such as p-tau217 and p-tau231 provide accurate detection of early pathological changes, other biomarkers capable of staging disease progression during preclinical AD are still needed. Combining exploratory and targeted mass spectrometry methods in neuropathologically confirmed brain tissue, we observed that p-tau235 is a prominent feature of AD pathology. In addition, p-tau235 seemed to be preceded by p-tau231, in what appeared to be a sequential phosphorylation event. To exploit its biomarker potential in cerebrospinal fluid (CSF), we developed and validated a new p-tau235 Simoa assay. Using three clinical cohorts, we demonstrated that (i) CSF p-235 increases early in AD continuum, and (ii) changes in CSF p-tau235 and p-tau231 levels during preclinical AD are consistent with the sequential phosphorylation evidence in AD brain. In conclusion, CSF p-tau235 appears to be not only a highly specific biomarker of AD but also a promising staging biomarker for the preclinical phase. Thus, it could prove useful tracking disease progression and help enriching clinical trial recruitment

    Mass spectrometric simultaneous quantification of tau species in plasma shows differential associations with amyloid and tau pathologies

    Get PDF
    Blood phosphorylated tau (p-tau) biomarkers, at differing sites, demonstrate high accuracy to detect Alzheimerʼs disease (AD). However, knowledge on the optimal marker for disease identification across the AD continuum and the link to pathology is limited. This is partly due to heterogeneity in analytical methods. In this study, we employed an immunoprecipitation mass spectrometry method to simultaneously quantify six phosphorylated (p-tau181, p-tau199, p-tau202, p-tau205, p-tau217 and p-tau231) and two non-phosphorylated plasma tau peptides in a total of 214 participants from the Paris Lariboisière and Translational Biomarkers of Aging and Dementia cohorts. Our results indicate that p-tau217, p-tau231 and p-tau205 are the plasma tau forms that best reflect AD-related brain changes, although with distinct emergences along the disease course and correlations with AD features—amyloid and tau. These findings support the differential association of blood p-tau variants with AD pathology, and our method offers a potential tool for disease staging in clinical trials

    Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer's Disease Neuroimaging Initiative

    Get PDF
    Whilst cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers for amyloid-β (Aβ) and tau pathologies are accurate for the diagnosis of Alzheimer’s disease (AD), their broad implementation in clinical and trial settings are restricted by high cost and limited accessibility. Plasma phosphorylated-tau181 (p-tau181) is a promising blood-based biomarker that is specific for AD, correlates with cerebral Aβ and tau pathology, and predicts future cognitive decline. In this study, we report the performance of p-tau181 in >1000 individuals from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), including cognitively unimpaired (CU), mild cognitive impairment (MCI) and AD dementia patients characterized by Aβ PET. We confirmed that plasma p-tau181 is increased at the preclinical stage of Alzheimer and further increases in MCI and AD dementia. Individuals clinically classified as AD dementia but having negative Aβ PET scans show little increase but plasma p-tau181 is increased if CSF Aβ has already changed prior to Aβ PET changes. Despite being a multicenter study, plasma p-tau181 demonstrated high diagnostic accuracy to identify AD dementia (AUC = 85.3%; 95% CI, 81.4–89.2%), as well as to distinguish between Aβ− and Aβ+ individuals along the Alzheimer’s continuum (AUC = 76.9%; 95% CI, 74.0–79.8%). Higher baseline concentrations of plasma p-tau181 accurately predicted future dementia and performed comparably to the baseline prediction of CSF p-tau181. Longitudinal measurements of plasma p-tau181 revealed low intra-individual variability, which could be of potential benefit in disease-modifying trials seeking a measurable response to a therapeutic target. This study adds significant weight to the growing body of evidence in the use of plasma p-tau181 as a non-invasive diagnostic and prognostic tool for AD, regardless of clinical stage, which would be of great benefit in clinical practice and a large cost-saving in clinical trial recruitment

    Plasma levels of phosphorylated tau 181 are associated with cerebral metabolic dysfunction in cognitively impaired and amyloid-positive individuals

    Get PDF
    Alzheimer’s disease biomarkers are primarily evaluated through MRI, PET and CSF methods in order to diagnose and monitor disease. Recently, advances in the assessment of blood-based biomarkers have shown promise for simple, inexpensive, accessible and minimally invasive tools with diagnostic and prognostic value for Alzheimer’s disease. Most recently, plasma phosphorylated tau181 has shown excellent performance. The relationship between plasma phosphorylated tau181 and cerebral metabolic dysfunction assessed by [18F]fluorodeoxyglucose PET in Alzheimer’s disease is still unknown. This study was performed on 892 older individuals (297 cognitively unimpaired; 595 cognitively impaired) from the Alzheimer’s Disease Neuroimaging Initiative cohort. Plasma phosphorylated tau181 was assessed using single molecular array technology and metabolic dysfunction was indexed by [18F]fluorodeoxyglucose PET. Cross-sectional associations between plasma and CSF phosphorylated tau181 and [18F]fluorodeoxyglucose were assessed using voxelwise linear regression models, with individuals stratified by diagnostic group and by β-amyloid status. Associations between baseline plasma phosphorylated tau181 and longitudinal (24 months) rate of brain metabolic decline were also assessed in 389 individuals with available data using correlations and voxelwise regression models. Plasma phosphorylated tau181 was elevated in β-amyloid positive and cognitively impaired individuals as well as in apolipoprotein E ε4 carriers and was significantly associated with age, worse cognitive performance and CSF phosphorylated tau181. Cross-sectional analyses showed strong associations between plasma phosphorylated tau181 and [18F]fluorodeoxyglucose PET in cognitively impaired and β-amyloid positive individuals. Voxelwise longitudinal analyses showed that baseline plasma phosphorylated tau181 concentrations were significantly associated with annual rates of metabolic decline in cognitively impaired individuals, bilaterally in the medial and lateral temporal lobes. The associations between plasma phosphorylated tau181 and reduced brain metabolism, primarily in cognitively impaired and in β-amyloid positive individuals, supports the use of plasma phosphorylated tau181 as a simple, low-cost, minimally invasive and accessible tool to both assess current and predict future metabolic dysfunction associated with Alzheimer’s disease, comparatively to PET, MRI and CSF methods
    • …
    corecore